Technical Features

Mechanical Movements

356 Technical Features / Mechanical Movements

The qualities of mechanical watches and how to preserve them

Why do Longines' watchmakers include watches fitted with a mechanical movement in their collections, sometimes even in preference to more recent technologies?
There's a simple answer: watches fitted with a traditional handwound or selfwinding movement provide all sorts of satisfactions that no other type of timepiece can match.
Of course more accurate time technologies are easy to find, quartz resonators for instance, but nothing beats mechanical watchmaking for pleasure pure and simple. Incorporating countless technical improvements, today's mechanical movements qualify as marvels of inspired ingenuity, born of centuries of fascinating history and the patient workmanship of some of the world's finest craftsmen. You need only observe a movement's intricate mechanism and rhythmically moving parts, the beauty and fineness of its components fashioned in steel as well as in various elaborate alloys and even in gold or platinum, to conclude that you are looking at a shining example of applied intelligence, brought to life by Nature's most versatile tool, the craftsman's hand.
What's more, the handwound or selfwinding mechanical movements fitted in today's Longines timepieces are precise to within a few seconds a week - more than enough for the demands of everyday life.

What is a mechanical movement made of?

Essentially metal - from the most valuable to the most complex. Although the modern watch's earliest ancestor, the steeple clock, was made only of iron, today's wristwatches may contain over a dozen metals, including alloys, spread over hundreds of parts and components.

Less than a millimeter thick for the most part, made in an incredible variety of shapes and sizes, some even finer than a human hair, the parts that make up a watch movement are assembled and adjusted, often simply by friction, with extraordinary skill and painstaking precision. Nevertheless, the more compact the movement and the smaller its parts, the more it is vulnerable to the hazards of everyday life and its various parts exposed to daily wear and tear.

A long and useful life

Today, a competently designed and well built mechanical watch movement can run smoothly and well for decades on end, assuming of course that it is treated with care and provided with regular maintenance. It should be remembered that on the wrist, the movement will be regularly exposed to such things as the negative effects of gravity and of magnetic fields, the repeated expansion and contraction of metal parts caused by sharp variations in temperature, much jarring and occasional hard knocks, the presence of moisture or fine particles (talc, for example) inside the case, and of course the slow but steady deterioration of the movement's special lubricants, potentially causing friction and jamming.

The selfwinding mechanism

By the late 18th century, a few exceptionally inventive watchmakers had devised a mechanism that made it possible for a watch movement to wind itself automatically, simply by harnessing the wearer's body movements. This study in miniaturized horological ingenuity was later adapted to the wristwatch. It works as follows: the normal movements of the forearm impel an oscillating weight, also called "rotor", positioned against the movement, to swing around its axis. The weight rewinds a spring which, in every watch of this type, stores the mechanical energy required to keep it running. Automatic winding thus does away with the need to wind the movement manually by the crown every day.

Hand winding if the watch stops

A selfwinding wristwatch normally has a power reserve of over a full day, often some forty hours. But if the watch is not worn for longer than its maximum power reserve, it will stop and will have to be rewound manually before being replaced on the wrist. In such cases, it is best to rotate the crown at least forty times, especially if the watch includes a calendar.

Frequency	$28 \prime 800 \mathrm{~A} / \mathrm{h}$
\varnothing	$73 / 4 \mathrm{\prime} \mathrm{\prime}-17.20 \mathrm{~mm}$
Height	4.80 mm
Winding	Automatic
Power reserve	48 hours
Accuracy	$-7+18$ sec./day
Base calibre	ETA 2671
Jewels	25

Frequency	$28 \prime 800 \mathrm{~A} / \mathrm{h}$
\varnothing	$83 / 4 \prime \prime-19.40 \mathrm{~mm}$
Height	3.60 mm
Winding	Automatic
Power reserve	40 hours
Accuracy	$-5+20$ sec./day
Base calibre	ETA 2000.1
Jewels	20

